FGF10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry.
نویسندگان
چکیده
AIMS Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which fibroblast growth factor 10 (FGF10) controls foetal cardiomyocyte proliferation and to test the hypothesis that FGF10 promotes the proliferative capacity of adult cardiomyocytes. METHODS AND RESULTS Analysis of Fgf10(-/-) hearts and primary cardiomyocyte cultures reveals that altered ventricular morphology is associated with impaired proliferation of right but not left-ventricular myocytes. Decreased FOXO3 phosphorylation associated with up-regulated p27(kip) (1) levels was observed specifically in the right ventricle of Fgf10(-/-) hearts. In addition, cell-type-specific expression analysis revealed that Fgf10 and its receptor, Fgfr2b, are expressed in cardiomyocytes and not cardiac fibroblasts, consistent with a cell-type autonomous role of FGF10 in regulating regional specific myocyte proliferation in the foetal heart. Furthermore, we demonstrate that in vivo overexpression of Fgf10 in adult mice promotes cardiomyocyte but not cardiac fibroblast cell-cycle re-entry. CONCLUSION FGF10 regulates regional cardiomyocyte proliferation in the foetal heart through a FOXO3/p27(kip1) pathway. In addition, FGF10 triggers cell-cycle re-entry of adult cardiomyocytes and is thus a potential target for cardiac repair.
منابع مشابه
TWEAK is a positive regulator of cardiomyocyte proliferation.
AIMS Proliferation of mammalian cardiomyocytes stops during the first weeks after birth, preventing the heart from regenerating after injury. Recently, several studies have indicated that induction of cardiomyocyte proliferation can be utilized to regenerate the mammalian heart. Thus, it is important to identify novel factors that can induce proliferation of cardiomyocytes. Here, we determine t...
متن کاملDevelopmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation.
OBJECTIVES Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to charac...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملA microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice.
In contrast to lower vertebrates, the mammalian heart has limited capacity to regenerate after injury in part due to ineffective reactivation of cardiomyocyte proliferation. We show that the microRNA cluster miR302-367 is important for cardiomyocyte proliferation during development and is sufficient to induce cardiomyocyte proliferation in the adult and promote cardiac regeneration. In mice, lo...
متن کاملmir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts.
RATIONALE Cardiomyocytes in adult mammalian hearts are terminally differentiated cells that have exited from the cell cycle and lost most of their proliferative capacity. Death of mature cardiomyocytes in pathological cardiac conditions and the lack of regeneration capacity of adult hearts are primary causes of heart failure and mortality. However, how cardiomyocyte proliferation in postnatal a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 104 3 شماره
صفحات -
تاریخ انتشار 2014